
DOI: 10.1007/s10910-006-9121-x
Journal of Mathematical Chemistry, Vol. 40, No. 1, July 2006 (© 2006)

A new eighth-order A-stable method for solving
differential systems arising in chemical reactions
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Implicit Runge–Kutta methods are successful algorithms for the numerical solu-
tion of stiff differential equations, as they usually appear in chemical reactions. This
article describes the construction of a particular implicit method based on internal
stages obtained from certain Chebyshev collocation points. The resulting method has
algebraic order 8 and A-stability characteristic. An embedding technique using the
Runge–Kutta method and a linear multistep one is provided in order to change the step
size. Numerical experiments illustrate the behaviour of the new method, showing that
it may reach great accuracy and be competitive with other well-known codes.
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1. Introduction

The aim of this contribution is to present a new method with A-stability
characteristic suitable for numerically solving stiff problems. Stiff problems are
characterized by the fact that the numerical solutions of slow movements are
considerably perturbed by nearby rapidly changing solutions, as it usually occurs
in problems arising from chemical reactions. In fact, the first appearance of the
term “stiff” was in the paper by Curtiss and Hirschfelder [1] on problems in
chemical kinetics.

The following section is devoted to the construction of an stiffly accurate
implicit Runge–Kutta method, which is proved to be A-stable and have eighth-
order. A key to high efficiency in numerical methods is the capacity to vary the
steplength according to the characteristics of the solution of the problem. For
this purpose, a pair of embedding Runge–Kutta methods are commonly used
[2]. But this technique results in a highly extra cost for the number of func-
tion evaluations. In section 4, a different strategy for the estimate of the local
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error is outlined. This new strategy is based in the use of a pair of methods: the
implicit Runge–Kutta method, and a linear multistep one. In section 5, several
numerical experiments are presented which demonstrate the effectiveness of
the method proposed in this paper, which may be competitive with other
well-known codes. Finally, in the last section some concluding remarks are
given.

2. Construction of the new method

In this paper, we are interested in the numerical integration of initial-value
problems of ordinary differential equations of the form

y ′(t) = f (t, y(t)) , t ∈ [t0, T ],
y(t0) = y0 ,

(1)

where the function f : R × R
m → R

m it is assumed to satisfy the necessary con-
ditions in order to ensure that the problem has a unique solution.

We consider an implicit Runge–Kutta method of seven stages given by the
Butcher tableau

c A

b

, (2)

where A = (
ai j

)7
i, j =1 , c = (c1, . . . , c7), b = (b1, . . . , b7), and the values ci are

chosen as

ci = ξi−1 = 1
2

(
1 + αi−1

)
, i = 1, . . . , 7

with the αi−1 the Chebyshev collocation points [3, p. 32] given by

αi−1 = cos(θi−1) , θi−1 = (7 − i)π

6
, i = 1, . . . , 7 . (3)

Explicitly, we have

c1 = 0 , c2 = 1
4

(
2 − √

3
)

, c3 = 1
4 , c4 = 1

2 ,

c5 = 3
4 , c6 = 1

4

(
2 + √

3
)

, c7 = 1 .
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A desirable condition, often called stiff accuracy, for Runge–Kutta methods
applied to very stiff problems is that the last stage is also the numerical solution
for the step (see [4]). In our context, this means that we set

bi = a7 i , i = 1, . . . , 7 .

Now, in order to determine values for the ai j we write the Runge–Kutta
method in (2) in the alternative form (see [5]):

yn+ci = yn + h
7∑

j=1

ai j f (tn + c j h, yn+c j ) , i = 1, . . . , 7 ,

yn+1 = yn + h
7∑

i=1

bi f (tn + ci h, yn+ci ) , (4)

where, as it is usual, yn+ci stands for the approximation of the true values
y(tn + ci h).

We consider the linear operators associated with the equations in (4) given
by

Li (z(t), h) = z(t + ci h) − z(t) − h
7∑

j=1

ai j z′(t + c j h) (5)

for i = 1, . . . , 7, where z(t) is a sufficiently differentiable function. Expanding
z(t +ci h) and z′(t +c j h) about t and imposing to the intermediate steps to have
seventh order we get for i = 1, . . . , 7 seven uncoupled algebraic systems of equa-
tions given by

ai1 + ai2 + · · · + ai 7 = ci ,

ai1 c1 + ai2 c2 + · · · + ai 7 c7 = c2
i

2
,

...

ai1 c6
1 + ai2 c6

2 + · · · + ai 7 c6
7 = c7

i

7
.

Solving these linear systems of Vandermonde type, the required values for
the Runge–Kutta method are obtained and finally the matrix A in the Butcher
tableau in (2) is given by
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and for the other two vectors we have

c =
[

0,
2 − √

3
4

,
1
4
,

1
2
,

3
4
,

2 + √
3

4
, 1

]T

,

b =
[

1
70

,
8
63

,
8
35

,
82
315

,
8

35
,

8
63

,
1
70

]
.

3. Stability and order of the method

When an s-stage implicit Runge–Kutta method is applied to the test equa-
tion y′ = λ y yields

yn+1 = R(λ h) yn

with the stability function R(z) : C → C given by

R(z) = 1 + z bT (I − z A)−1 e ,

where e is the vector of s components given by e = (1, . . . , 1)T . In this context,
the method is called A-stable (see [4]) if the left-half complex plane is included
in the stability domain, that is,

C
− = {z; Re z < 0} ⊂ S = {z; |R(z)| � 1} . (6)

The stability function for the method in the above section is the rational
function

R(z) = N (z)

D(z)
,
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where

N (z) = 2580480 + 1290240 z + 291840 z2 + 38400 z3

+3108 z4 + 146 z5 + 3 z6 ,

D(z) = 2580480 − 1290240 z + 291840 z2 − 38400 z3

+3108 z4 − 146 z5 + 3 z6 ,

which has modulus less than one on the left-half complex plane, and thus,
according to (6), the method is A-stable. Moreover, with the help of the Math-
ematica system it may be checked that the order conditions of the Butcher the-
ory for order 8 are verified, but not for order 9, and so the method has algebraic
order 8. In fact, for the equation that approximates the final value (which coin-
cides with the equation for the last stage) we have

y(tn + h) −
(

y(tn) + h
7∑

i=1

bi y′(tn + ci h)

)

= h9 y(9)(tn)

26011238400
+ O(h10) .

4. Notes on the implementation and step size selection

After applying the method described in the above sections to a given pro-
blem of the form in (1) we obtain on each step an algebraic system of 6 × m
equations with 6 × m unknowns (the values of the solution components at the
intermediate stages). For nonlinear differential equations this system has to be
solve iteratively and for this purpose different versions of the Newton method
may be used (see [6,7]).

As it is usually done for the Runge–Kutta methods we could consider the
use of an embedded pair of methods for the step size selection. Taking

b̂ =
[

0,
7
45

,
1
5
,

13
45

,
1
5
,

7
45

, 0
]

,

it is easy to check with the help of the Mathematica system that the implicit
Runge–Kutta method

c A

b̂

verify the order conditions to have order 6, where A and c are the same as
before.



76 J. Vigo-Aguiar and H. Ramos / Method for solving differential systems

Thus, we would have an approximation of y(tn + h) by a Runge–Kutta
method of lower order, given by

ŷn+1 = yn + h
7∑

i=1

b̂i f (tn + ci h, yn+ci ) . (7)

The difference between both approximations could be taken as an estima-
tion for the local truncation error, given by

err = yn+1 − ŷn+1 = h
7∑

i=1

(
bi − b̂i

)
f (tn + ci h, yn+ci ) , (8)

which behaves like O(h7) for h → 0.
But the use of the embedded pair of methods described above would be

very closely in terms of the number of functions evaluations. Instead of that, we
propose a different approach to obtain an estimate for the local truncation error,
using the linear multistep method of second-order (which is the two-step back-
ward differentiation formula of step size h/2, [11]) given by

h fn+1 = 3 yn+1 + yn − 4 yn+1/2 . (9)

From this formula, if we assume that z(t) is the true solution of the prob-
lem in (1), we have

h f (tn+1, z(tn+1)) = 3 z(tn+1) + z(tn) − 4 z(tn+1/2) + O(h3) , (10)

where tn+1, tn+1/2 are abbreviations, respectively, for tn + h and tn + 1
2 h.

Now, if yn+1/2 is the approximate value at the intermediate stage obtained
with the Runge–Kutta method described in section 2, assuming the localization
hypothesis [5]

yn = z(tn) , yn+1/2 = z(tn+1/2)

after expanding in Taylor series about (tn+1, yn+1) the function on the left-hand
side in (10), we have the approximation

h

[
f (tn+1, yn+1) + δ f

δy
(tn+1, yn+1)

(
z(tn+1) − yn+1

)
]

� 3 z(tn+1) + yn − 4 yn+1/2 , (11)

where δ f/δy refers to the Jacobian matrix.
On subtracting 3 yn+1 in the two sides of (11) and rearranging, we get

(
3 Im − h

δ f

δy
(tn+1, yn+1)

)
(z(tn+1) − yn+1)

� h f (tn+1, yn+1) − yn + 4 yn+1/2 − 3 yn+1 , (12)

where Im stands for the identity matrix of order m.
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Finally, the estimation for the local truncation error may be given by

err = ∥∥z(tn+1) − yn+1
∥∥

�
∥
∥∥M−1 (

h f (tn+1, yn+1) − yn + 4 yn+1/2 − 3 yn+1
)∥∥∥ , (13)

where M is the matrix

M = 3 Im − h
δ f

δy
(tn+1, yn+1) .

Note that with this strategy, the extra cost for changing the step size con-
sists just in one more function evaluation per step. The numerical experiments
confirm that using this procedure we can obtain great accuracy.

Once we have derived an estimation for the local error, the standard step
size prediction (see [8,9]) leads to

hnew = τ hold

(
atol
‖err‖

)1/7

for a given tolerance, atol, where τ is a safety factor. In order to avoid excessive
computations, we also consider the common strategy that if the new step size
satisfies

k1 hold � hnew � k2 hold

with, say k1 = 1.0 and k2 = 1.25, then we retain hold for the following step.

5. Numerical results

To check the numerical behaviour when used to solve initial-value
problems, we have applied the above method to a variety of well-known prob-
lems, which have appeared different times in the literature. These problems
model different chemical reactions where usually certain variables change rapidly
whereas others vary very slowly, indicating the presence of stiffness. The strategy
for changing the step size was based on the estimation of the local truncation
error using the “embedding technique” based on the Runge–Kutta method and
the linear multistep method in the form describe in the above section. The code
thus obtained will be named RK C6.
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5.1. The Robertson problem

This classical problem that models the kinetics of a chemical reaction (see
[4]) consists of a system of three equations given by

y′
1(t) = −0.04 y1(t) + 104 y2(t)y3(t) ,

y′
2(t) = 0.04 y1(t) − 104 y2(t)y3(t) − 3 × 107 y2(t)2 ,

y′
3(t) = 3 × 107 y2(t)2

with initial conditions y1(0) = 1 , y2(0) = y3(0) = 0 . This special system, as it
is typical for problems arising in chemical kinetics, has a small very quick initial
transients. It has been integrated on the interval [0, 1011]. The reference solution
at the end of the integration interval has been taken from the test set in [10],

y1(t f ) = 0.2083340149701255 × 10−7 ,

y2(t f ) = 0.8333360770334713 × 10−13 ,

y3(t f ) = 0.9999999791665050 .

The results obtained with the new method are presented in table 1 with
some of the data for different codes that appear in [10]. The parameters listed
in the table are the prescribed tolerance, atol, the total number of steps, nstep,
the number of function evaluations, f eval, and a measure of the error given by
the scd factor,

scd = − log10 max
i

{ |yi exact(t f ) − yi computed(t f )|
|yi exact(t f )|

}

,

where t f is the final point at the integration interval. In figure 1, we show the
efficiency curves for these codes, where we have plotted the polygonals join-
ing the points (log10( f eval), scd), that is, the relative error (scd factor) versus

Table 1
Results for problem 5.1.

METHOD atol h0 nstep f eval scd

RKC6 10−8 10−6 46 312 7.16
10−9 10−6 81 567 10.28
10−10 10−6 152 1064 12.04

DASSL 10−11 1278 1549 3.47
MEBDF 10−14 10−12 1624 5252 7.85
VODE 10−14 3306 3873 5.91
RADAU 10−14 10−12 108 3420 7.53
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Figure 1. Efficiency comparison curves for problem 5.1.

the computational cost measured by the logarithm of the number of function
evaluations.

5.2. The HIRES problem

This I.V.P. originated from plant physiology describes the “High Irradiance
Response” of photomorphogenesis on the basis of phytochrome, and consists of
a system of eight nonlinear ordinary differential equations given by

y′
1(t) = −1.71 y1(t) + 0.43 y2(t) + 8.32 y3(t) + 0.0007 ,

y′
2(t) = 1.71 y1(t) − 8.75 y2(t) ,

y′
3(t) = −10.03 y3(t) + 0.43 y4(t) + 0.035 y5(t) ,

y′
4(t) = 8.32 y2(t) + 1.71 y3(t) − 1.12 y4(t) ,

y′
5(t) = −1.745 y5(t) + 0.43 y6(t) + 0.43 y7(t) ,

y′
6(t) = −280 y6(t) y8(t) + 0.69 y4(t) + 1.71 y5(t) − 0.43 y6(t) + 0.69 y7(t) ,

y′
7(t) = 280 y6(t) y8(t) − 1.81 y7(t) ,

y′
8(t) = −280 y6(t) y8(t) + 1.81 y7(t)

with initial vector y0 given by y(0) = (1, 0, 0, 0, 0, 0, 0, 0.0057)T . The problem
has been numerically solved on the interval [0, 321.8122] as it was done in the
test set [10] and the reference values were taken from there. The results are pre-
sented in table 2 where it appears the same parameters and comparisons with the
same integrators as in the above problem.

In figure 2 we show the efficiency curves for these codes, where it appears
the relative error (scd factor) versus the number of function evaluations in
logarithmic scale.
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Table 2
Results for problem 5.2.

METHOD atol h0 nstep f eval scd

RKC6 10−9 10−3 189 1323 10.30
10−10 10−3 400 2800 12.53

DASSL 10−7 380 591 3.81
10−10 1160 1557 6.78

MEBDF 10−7 10−9 218 767 4.24
10−10 10−12 420 1492 7.30

VODE 10−7 415 608 3.98
10−10 933 1224 6.20

RADAU 10−7 10−9 51 985 4.91
10−10 10−12 69 1511 8.03
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RADAUVODEMEBDFDASSLRKC6

Figure 2. Efficiency comparison curves for problem 5.2.

5.3. The OREGONATOR system

This problem originates from the celebrated Belousov–Zhabotinskii reaction
and consists of a stiff system of three nonlinear differential equations:

y′
1(t) = s ( y2(t) + y1(t)(1 − q y1(t) − y2(t))) ,

y′
2(t) = ( y3(t) − (1 + y1(t))y2(t)) /s ,

y′
3(t) = w (y1(t) − y3(t))

with s = 77.27 , w = 0.161 , q = 8.375×10−6 , and initial values y(0) = (1, 2, 3)T .
The integration interval has been taken [0, 360] as in [10], and the reference val-
ues at the final point t f have been considered from there. In table 3 the data
for the new method RK C6 and the other codes are presented, with the same
considerations as in Problem 5.1.
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Table 3
Results for problem 5.3.

METHOD atol h0 nstep f eval scd

RKC6 10−6 10−3 929 6503 8.49
10−8 10−3 4466 31262 13.09

DASSL 10−7 2725 4210 5.57
10−10 8192 11119 8.66

MEBDF 10−7 10−9 1586 5399 6.39
10−10 10−12 3248 10754 9.65

VODE 10−7 3083 4348 4.73
10−10 7890 9903 7.51

RADAU 10−7 10−9 267 6859 7.48
10−10 10−12 261 12917 9.82
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Figure 3. Efficiency comparison curves for problem 5.3.

In figure 3 we have plotted the efficiency curves for these codes showing the
scd factor versus the number of function evaluations in logarithmic scale.

5.4. The BRUSSELATOR system

Consider the diffusion-free “Brusselator” system [11] given by the equations

y′
1(t) = B + y2

1(t) y2(t) − (A + 1) y1(t) , y1(0) = y0
1 ,

y′
2(t) = A y1(t) − y2

1(t) y2(t) , y2(0) = y0
2 ,

where A and B are positive real constants [12]. It can be shown that the only
critical point of the system is (y∗

1 , y∗
2 ) = (B, A/B). For our numerical experiment

we take A = 3, B = 1, and initial values y1(0) = 1.5 , y2(0) = 3, and consider
the integration interval [0, 20] as it was done in a recent article by Butcher and
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Figure 4. Efficiency comparison curves for problem 5.4.

0.5 1 1.5 2 2.5 3 3.5
y1

1

2

3

4

5
y2

Figure 5. Phase portrait for problem 5.4 with A = 3 and B = 1.

Podhaisky [13]. In figure 4 we present in a double logarithmic scale the results
obtained with the method RK C6 and the best of the results on [13] with a var-
iable-order method that will be named B P4. Now, we consider the number of
function evaluations versus the absolute error measured in the L2 norm.

In figure 5, the phase portrait of the system using the RK C6 method is
depicted.
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6. Conclusions

In this paper, the construction of an implicit Runge–Kutta method appro-
priate for solving stiff initial-value problems is described. In the context of sta-
bility properties, the resulting method is A-stable and, interpreted as a general
linear method, it is inherently Runge–Kutta stable [14]. We have derived the
coefficients of the method which has algebraic order 8. A new strategy using
an appropriate backward differentiation formula, instead of an embedded pair
of Runge–Kutta methods, deserves a special attention in the task of changing
the step size. This procedure may be applied in the general context of implicit
Runge–Kutta methods, avoiding the extra cost of the embedding technique. It
was shown by numerical examples on chemical kinetics that these methods are
promising and indicate that may be competitive with other codes commonly used
for stiff differential equations.
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